COMSOL Multiphysics® 软件可以从零开始构建模型并支持模拟多物理场。你...。
COMSOL Multiphysics® 软件可以从零开始构建模型并支持模拟多物理场。你可根据自己的需求将表征不同物理场的模型进行耦合,软件中也内置了耦合接口来实现不同物理场之间的耦合建模,但有时,需要做一些额外的工作。这篇文章,我们以建立一个磁流体动力学(MHD)模型为例介绍在 COMSOL 中的建模流程。
磁流体动力学的多物理场建模MHD 现象建模本质上是一个多物理场问题,我们一定要用数值方法来求解流体流动、电流和磁场之间的耦合问题。这些不同的物理场都是通过偏微分方程描述的,能够最终靠有限元方法求解。
我们看看如何在一个相对简单的问题背景下进行建模:如上所述,绝缘的矩形通道内为不可压缩导电流体,这个通道连接两个流体静压相等的无限大容器(未建模)。有两个电极穿过流动通道在两侧伸出,通过施加电势差驱动电流通过流体。此外,在上方和下方分别放置一个圆形磁铁。磁体产生静磁场\mathbf{B},使得具有导电性\sigma的流体以一定速度\mathbf{v}移动通过该磁场,由此产生感应电流\mathbf{J} = \sigma \left( \mathbf{v \times B}\right)。除了这些感应电流之外,由于电势场的边界条件,还会产生电流 V,因此流体中的总电流变为:
流经磁场的电流将对流体产生体积力\mathbf{F = J \times B},并将流体从一个容器泵送到另一个容器。我们假设系统在稳定状态下运行。
对于这样的一个问题,我们应该求解流体中的偏微分方程组来描述电场和磁场。方程式为:
这组方程通过磁场和电场接口(AC/DC 模块的一部分),使用安培定律和电流守恒特征以及单独的速度(洛伦兹项)特征求解。
其中\mathbf{B_r}是剩余磁通密度,它仅在磁域中非零。当单独求解上述方程时,请使用磁场和电场接口中的安培定律特征。
我们假设通道壁的属性不影响场,因此在模型中忽略它们。使用一组材料属性和边界条件来给出说明性结果。任何位置的磁场边界条件都是磁绝缘条件,xy平面除外,该平面采用理想磁导体条件来利用系统的对称性。表示电极的域必须一直延伸到建模域的边界,接触磁绝缘边界,以提供电流返回路径。电压型接地和终端条件应用于这些外表面,而电绝缘条件应用于所有其他适用的边界。
此外,我们还需要求解通道中的流场。我们假设流动是层流,从而在通道域中求解纳维-斯托克斯方程。如果流动是湍流,我们大家可以添加一个湍流模型。开放边界条件应用于通道的两端,表压为零。对称条件应用于xy平面。计算域如下图所示。
流动将由流体中电流和磁场的相互作用产生的体积力\mathbf{F = J \times B}驱动。这个力的表达式没有内置到软件中,所以在这里我们应该做一些手工操作。我们应该找到电流和磁场分量的内置表达式,能够最终靠查看方程视图并生成报告来实现,如知识库中关于实现用户定义的多物理场耦合的描述。这些内置表达式用于定义流体上的体积力,如下面的屏幕截图所示。
最后,要将计算出的速度场耦合回电磁问题,请使用磁场和电场接口中的速度(洛伦兹项)特征,如下面的屏幕截图所示。请注意,软件会自动将流体速度场识别为此特征的输入。格外的简单!这两个物理场之间的耦合现在完全实现了。
说到单元网格划分和单元阶次,这里一个重要的问题是模型的计算量。求解流体和周围域中的磁场和电场是模型中计算量最大的部分,因此我们大家都希望将整个模型中的网格单元总数保持最少。基于线性静态问题的一些经验法则,我们能说至少具有二阶单元是一个很好的起点。因此,我们将流体流动的离散化转换为 P2 + P2 离散化,这在某种程度上预示着速度和压力都用二阶基函数来描述。磁场和电场都用二阶离散化来描述。由于所有场都被离散化为至少二阶,因此几何形状的阶次也将自动变为二阶。对可选网格阶次和网格大小的全面调查留给有积极性的读者作为练习。
求解时,软件将自动采用所谓的分离方法,在确定电磁场和速度场之间来回切换,并计算这些场的线性子系统,每个子系统都有自己的优化迭代求解器。由于这种多物理场问题本质上是非线性的,因此了解解决此类问题时也许会出现的难题以及怎么样才能解决这一些难题通常也很有帮助,正如此条知识库条目中关于提高非线性稳态模型的收敛性所述。
多物理场分析的结果如下图所示。我们观察到明显的泵送效应:施加的电压导致电流流过流体,当这些电荷在磁场中移动时,它们会受到一个力的作用,这个力被传递给流体。
到目前为止,我们已建立了一个包括磁场、电流和流体流动的模型,我们考虑了所有物理场方程之间的双向耦合。也就是说,每一种物理场现象都会影响其他物理场现象。但事实上,对这种特殊情况,我们不需要这样做。接下来我们看一下其中的原因,以及它如何让我们的模型更简单。
如果我们回过头来看一下之前的所有控制方程,我们大家可以看到只有两个方程引入了物理场现象之间的耦合。方程\mathbf{F = J \times B}由于电流和磁场而对流体施加一个力,还有一个方程\mathbf{J} = \sigma \left( – \nabla V + \mathbf{v \times B}\right),表示流体中的总电流。后一个方程表明,电流是由于外加电压边界条件以及导电流体通过磁场的运动而产生的。但是,如果我们假设前一项远大于后一项(即 -\nabla V \gg \mathbf{v \times B}),那么我们将当前的方程简化为:\mathbf{J} = \sigma \left( - \nabla V \right)。这在某种程度上预示着流体流动问题不会影响电流,流动方程可以与电磁场方程完全分开求解。也就是说,我们大家可以首先求解电磁场,一旦知道了电磁场,就使用这一些场作为流动问题的输入,从而使问题单向耦合。
我们还能够直接进行额外的简化。严格地说,磁场是由磁铁和电流引起的。然而,对我们这里分析的边界条件和材料特性,由于电流产生的磁场远小于由磁体引起的磁场。因此,我们大家可以做出简化的假设,即磁场仅仅是由于磁铁而产生的;也就是说,电流不会产生非常明显的磁场。这样,我们大家可以在无电流假设下求解磁场,并分别使用磁场,无电流和电流接口求解电流。这些物理场接口具有与前面讨论的类似的一组边界和域条件。
显示简化模型设置的屏幕截图。上面的屏幕截图显示了分析这些简化后新模型的设置。流体上体积力的表达式将使用不相同的变量名,但除此之外,该模型与之前非常相似。请注意,三个不同的物理场接口在三个单独的研究步骤中求解。磁场,无电流和电流接口方程可以分别求解,两者都必须在层流接口方程之前求解。
与完全耦合的情况相比,软件在求解这种简化模型时,求解时间将大幅度减少,是因为,物理场方程是分开求解的,不有必要进行迭代。从上图显示的结果我们大家可以看出,这些解几乎与之前未简化的计算结果相同。当然,我们所做的这些假设和简化确实有其局限性,因此对照完整的模型进行全方位检查是没有坏处的。但 COMSOL Multiphysics 平台具有强大的功能和灵活性,我们大家可以用它来轻松构建简化模型和完整模型,并作比较,然后根据自身的需求对模型做修改。你准备好开始建立自己的多物理场模型了吗?